Publications sorted by topic


Use of the model system C. elegans

C.  elegans

  1. Ayoub IM, O A. Eldahshan, M Roxo, A N B. Singab, M Wink Baicalein 5,6-dimethyl ether from ameliorates oxidative stress and mediates anti-aging and neuroprotective activities in

  2. Roxo, M., H Peixoto, M Wink  Piquiá (Caryocar villosum) exerts neuroprotective effects and delays age-related muscle decline in Caenorhabditis elegans. Submitted for publication

  3. Zhang S, C Duangjan, T Tencomnao, L Wu, , J Lin Oolonghomobisflavans exert neuroprotective activities in cultured neuronal cells and anti-aging effects in

  4. Wink, M. Le nématode Caenorhabditis elegans : un organisme modèle pour la recherche sur le viellissement, l'apoptose et en pharmacologie. In press

  5. Roxo, M.,   The use of the nematode Caenorhabditis elegans to study antioxidant and longevity promoting plant secondary metabolites. In New Findings from Natural Products. E.Ovidi, T. Karpinski A. Tiezzi ed; Benthambooks; Submitted for publication

  6. Wink, M. 2022 Current Understanding of Modes of Action of Multicomponent Bioactive Phytochemicals: Potential for Nutraceuticals and Antimicrobials. Annual Review of Food Science and Technology, 2022. 13:6.1–6.23

  7. Thabit S, H Handoussa, N S. El Sayed, H Breitinger and M Wink  2021. A fruit extract of Styphnolobium japonicum (L.) counteracts oxidative stress and mediates neuroprotection in Caenorhabditis elegans possibly through the SKN-1/Nrf-2 pathway. Phytomedicine

  8. Duangjan, C.; Rangsinth, P.;Zhang, S.; Gu, X.;.;Tencomnao, T. 2021 Neuroprotective Effects of Glochidion zeylanicum Leaf Extract against H2O2/Glutamate-Induced Toxicity in Cultured Neuronal Cells and A_-Induced Toxicity in Caenorhabditis elegans. Biology , 10, 800.

  9. Duangjan C, P Rangsinth, X Gu,  S Zhang, , T Tencomnao. leaf extract protects against glutamate-induced oxidative toxicity in HT22 hippocampal neuronal cells and increases stress resistance in . Frontiers in Nutrition,

  10. Kittimongkolsuk P , N Pattarachotanant, S Chuchawankul,, and T Tencomnao. , 10,30.

  11. Kittimongkolsuk P, M Roxo, H Li, S Chuchawankul,, and T Tencomnao. enhance stress resistance and extend lifespan in via the DAF-16/FoxO signaling pathway.  Pharmaceuticals , 14, 93. 10.3390/ph14020093

  12. Qi Z, H Ji, M Le, H Li, A Wieland, S Bauer, L Liu, , I Herr 2021. Sulforaphane promotes C. elegans longevity and healthspan by DAF-16/DAF-2 insulin/IGF-1 signaling. Aging 13, 2021

  13. Roxo M, H Peixoto, P Wetterauer, E Lima,  Piquiá shells (): a fruit by-product with antioxidant and anti-aging properties in

  14. Zhang S, C Duangjan, T Tencomnao, J Liu, M Wink, J Lin 2020 Neuroprotective effects of oolong tea extracts against glutamate-induced toxicity in cultured neuronal cells and Aβ-induced toxicity in Caenorhabditis elegans., Food & Function, 2020, 11, 8179 – 8192, DOI: 10.1039/D0FO01072C

  15. Azevedo B, A M. S. Pereira, M Roxo, M C. Borges, H Peixoto, B W. Bertoni, S H. T. Contini, A Lopes, S C. França and Antioxidant activity of an aqueous leaf extract from Uncaria tomentosa and its major alkaloids mitraphylline and isomitraphylline in Caenorhabditis elegans. Molecules 2019, 24, 3299; doi:10.3390/molecules24183299

  16. Duangjan C, P Rangsinth, X Gu, and T Tencomnao 2019 leaf extracts exhibit lifespan extending and oxidative stress resistance properties in via DAF-16/FoxO and SKN-1/Nrf-2 signaling pathways. Phytomedicine 64,

  17. Duangjan C, P Rangsinth, X Gu, Tencomnao, 2019 Lifespan extending and oxidative stress resistance properties of a leaf extract from in Oxidative Medicine and Cellular Longevity 2019,

  18. Duangjan C, P Rangsinth, X Gu, S Zhang, M Wink, T Tencomnao (2019) Data on the effects of Glochidion zeylanicum leaf extracts in Caenorhabditis elegans. Data in Brief 26, 104461

  19. Li H, M Roxo, X Cheng, S Zhang, H Cheng, M Wink   Pro-oxidant and Lifespan Extension Effects of Caffeine and Related Methylxanthines in . Food Chemistry X1, doi: 10.1016/j.fochx.2019.100005

  20. Link P,  Isoliquiritigenin exerts antioxidant activity in via insulin-like signaling pathway and SKN-1. Phytomedicine 55, 119–124,

  21. Peixoto H, M Roxo, E Lima, K Valente, M Braun, X Wang, . Bark extract of the Amazonian tree Endopleura uchi  (Humiriaceae) extends lifespan and enhances stress resistance in Caenorhabditis elegans. Molecules 24, 915; doi: 10.3390/molecules24050915

  22. Petruk G, M Roxo, F de Lise, F Mensitieri, E Notomista, , V Izzo, D M Monti. 2019 The marine gram-negative bacterium sp. PP1Y as a potential source of novel metabolites with antioxidant activity. ers 41, 273-28; doi: 10.1007/s10529-018-02636-4

  23. Rangsinth P, A Prasansuklab, C Duangjan, K Meemon, and T Tencomnao 2019 Leaf extract enhances oxidative stress resistance and prolongs lifespan in BMC Complementary and Alternative Medicine2019, 19:164

  24. Tawfeek N, M Sobeh, D I Hamdan, N Farrag, M Roxo, A M. El-Shazly and  Phenolic compounds from L. and Willd. (Salicaceae) counteract oxidative stress in 2019, 24, 1999; doi:10.3390/molecules241019

  25. Thabit S, H Handoussa, M Roxo, B Cestari de Azevedo, N SE El Sayed, . Styphnolobium japonicum (L.) Schott Fruits Increase Stress Resistance and Exert Antioxidant Properties in Caenorhabditis elegans and Mouse Models, Molecules 24 (14), 2633

  26. Heiner F , B. Feistel, . Sideritis scardica extracts inhibit aggregation and toxicity of amyloid-β in Caenorhabditis elegans used as a model for Alzheimer's disease. PeerJ 6:e4683; DOI 10.7717/peerj.4683

  27. Peixoto H, M Roxo, H Koolen, F da Silva, E Silva, M Braun, X. Wang, Molecules 2018, 23, 534; doi:10.3390/molecules23030534 

  28. Petruk G, I Gifuni, A Illiano, M Roxo, G Pinto, A Amoresano, A Marzocchella, R Piccoli, , G Olivieri, D M Monti Simultaneous production of antioxidants and starch from the microalga ., Algal Research, 34, 164-174;

  29. Thabit SA, H Handoussa, M Roxo,El Sayed, NS, B Cestari de Azevedo, Evaluation of antioxidant and neuroprotective activities of (L.) usingthe model. PeerJ, 6:e5159; Doi: 10.7717/peerj.5159

  30. Peixoto, H,M Roxo, T Röhrig, E Richling, Anti-aging and antioxidant potential of var. sorbilis: Findings in indicate a new utilization for roasted seeds of guarana. Medicines; , 61; doi:10.3390/medicines4030061

  31. Link P, K Roth, F Sporer, and Carlina oxide exhibit antioxidant activity and counteracts Aβ toxicity in . Molecules, , 871; doi:10.3390/molecules21070871, 1-10

  32. Peixoto H, M Roxo, S Krstin, T Röhrig, E Richling, . An anthocyanin-rich extract of Açaí ( Mart.) increases stress resistance and retards aging related markers in . Journal of Agricultural and Food Chemistry, 64, 1283-1290

  33. Peixoto H, M Roxo, S Krstin, .2016.  Anthocyanin-rich extracts of Acai ( Mart.) mediate neuroprotective activities 6, 385–393

  34. Sobeh, M, E A. El-Hawary, H Peixoto, R M. Labib, H E. Handoussa, A H. El-Khatib, Sharapov. F, T Mahmoud, S Krstin, MW. Linscheid,A Nasser B. Singab, , N A. Ayoub .phenolic secondary metabolites from Sond. (Fabaceae) and demonstration of their antioxidant activities in PeerJ 4:e2404; DOI 10.7717/peerj.2404

  35. Wang, E., Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ 4:e1879; DOI 10.7717/peerj.1879

  36. Link, P., Fu Y, Wetterauer, B. & Extracts of and isoliquiritigenin, one of its compounds, counteract amyloid-beta toxicity in Planta Medica, 81, 357-362.

  37. Su S. and , 2015 Natural lignans from as antiaging agents in . Phytochemistry, 117, 340-350.

  38. Abbas, S., 2014. Green Tea extract induces the resistance of against oxidative stress. Antioxidants 3, 129-143

  39. Rezaizadehnajafi, L., : EPs7630® from increases stress resistance in and enhances life span probably via the DAF-16/FOXO pathway. Phytomedicine, 21, 547–550

  40. Chen W, Joubert, E., van Wyk, BE, Ameliorative effect of aspalathin from rooibos () on acute oxidative stress in . Phytomedicine 20, 380-386

  41. Chen W, L. Rezaizadehnajafi, (2013) Influence of resveratrol on oxidative stress resistance and life span in : J Pharmacy and Pharmacology, 65, 682-688

  42. Chen,W., D. Müller, E. Richling, (2013)nthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating theDAF-16/FOXO transcription factor.. Journal Agricultural Food Chemistry,

  43. *Wink, M. Abbas, S. (2012) Epigallocatchin gallate (EGCG) from green Tea (Camellia sinensis) and other natural products mediate stess resistance and slow down aging processes in Caenorhabditis elegans . In: Tea in Health and Disease Prevention, Elsevier pp 1005-1115

  44. Abbas, S., Epigallocatechin gallate inhibits beta-amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine, 17, 902-909, 2010

  45. Abbas, S. Epigallocatechin gallate (EGCG) from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Medica 75, 216-221, 2009

Hauser, M.-T. and M. Wink: Uptake of alkaloids by latex vesicles and isolated mesophyll vacuoles of Chelidonium majus (Papaveraceae). Z. Naturforschung 45 c, 949-957, 1990

Mende, P. and M. Wink: Uptake of the quinolizidine alkaloid lupanine by protoplasts and isolated vacuoles of suspension-cultured Lupinus polyphyllus Cells. Diffusion or carrier-mediated transport? Journal Plant Physiology 129, 229-242, 1987

Sauerwein, M., Shimomura, K. and M. Wink: Incorporation of 13C-acetate into tropane alkaloids by hairy root cultures of Hyoscyamus albus. Phytochemistry 32, 905-909, 1993

Szenthe, A., Schäfer, H., Hauf, J., Schwend, T. and Wink, M.: Characterisation and expression of monosaccharide transporters in lupins, Lupinus polyphyllus and L. albus, J. Plant Res. 120 pp 697-705, 2007

Wink, M.: Evolution of plant secondary metabolism: In Ecological biochemistry- Environmental and interspecies interactions, G. J. Krauss & D. H. Niess (eds.) Wiley-VCH, 3-12, 2014

Wink, M.: Evolution of plant secondary metabolism: In Ecological biochemistry- Environmental and interspecies interactions, G. J. Krauss & D. H. Niess (eds.) Wiley-VCH, 3-12, 2014

Wink, M.* and P. Waterman: Chemotaxonomy in relation to molecular phylogeny of plants. In: "Biochemistry of plant secondary metabolism" (M. Wink, ed.), Sheffield Academic Press and CRC Press, Annual Plant Reviews, Vol. 2, 300-341, 1999

Wink, M.** (ed.): Biochemistry of plant secondary metabolism, Sheffield Academic Press and CRC Press, Annual Plant Reviews, Vol. 2, 358 pp, 1999

Wink, M.** (ed.): Function of plant secondary metabolites and their exploitation in biotechnology. Sheffield Academic Press and CRC Press, Annual Plant Reviews, Vol. 3, 362 pp, 1999

Wink, M.: Evolution of Secondary Plant Metabolism. Encyclopedia of Life Sciences, ELS John Wiley Sons, Ltd Chichester, 1-12, 2008

Wink, M.: Biochemistry, Physiology and Ecological Function of Secondary Metabolites. Chapter 1, Introduction. Wiley-Blackwell Annual Plant Reviews 40, 1-19, 2010

Wink, M.: Functions and Biotechnology of plant secontary metabolites. Introduction, Chapter 1., Annual Plant Reviews. 39, 1- 20, 2010

Wink, M.: Vom Pfeilgift bis zum Rauschmittel: Sekundärstoffe - die Geheimwaffen der Pflanzen. Biol. Unserer Zeit, 4, (45), 225-235, 2015

Wink, M.*: Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv. Bot. Res. 25, 141-169, 1997

* Wink, M.: Alkaloids - Properties and Determination. The Encyclopedia of Food and Health, Vol. 1, 97-105, 2016

Wink, M.*: The plant vacuole: A multifunctional compartment. J. Exp. Botany, Vol 44, Supplement, 231-246, 1993

Wink, M., Heinen, H.J., Vogt, H. and H.M. Schiebel: Cellular localization of quinolizidine alkaloids by laser desorption mass spectrometry. Plant Cell Reports 3, 230-233, 1984

Wink, M. and P. Lehmann: Wounding- and elicitor induced formation of coloured chalcones and flavans as phytoalexins in Hippeastrum x hortorum. Botanica Acta 109, 412-421, 1996

Wink, M.: Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3-19, 2003

Wink, M.: Genes of secondary metabolism: Differential expression in plants and in vitro cultures and functional expression in genetically transformed microorganisms. In: Primary and Secondary Metabolism of Plant Cell Cultures (W.G.W. Kurz, ed.), Springer-Verlag Berlin, 239-251, 1989